

Update on Tracking Software

Christof Roland(MIT), Anthony Frawley(FSU),
Jin Huang(BNL), Haiwang Yu (NMSU)

Momentum resolution much worse than benchmarks

Christof's proposal, in Mid. March

Taskforce formed

- Tony and Christof organized a taskforce to beat it.
 - MAPS+INTT Tony
 - TPC Carlos, Veronica
 - GenFit Haiwang
 - Seeding Christof, Sourav, Haiwang
 - Trajectory Builder Christof, Haiwang
 - Ambiguity resolution Sanghoon
 - Track Quality selection Veronica + Sourav
 - Performance evaluation Souray, Xiaolong
 - etc.

sPhenix Tracking Tasks

High Priority (Crucial for first implementation and MVTX Proposal)

Redesign hit and track structures - This is a basic building block of the project (Carlos,

- · Minimize coordinate transformations, cache information
 - TPC coordinate map and cache (Carlos)
- Silicon case (Tony) TVector operations?
- SvtxHit and SvtxTrack vs genfit:track and genfit:measurementOnPlane (Haiwang)
- · Avoid duplication and parallel structures (Carlos)

Detector loop + hit containers - Efficient access and sorting of hits will determine performance

- Hits sorted by Laver
 - TPC hit/digit/cluster structure navigation (Carlos)
 - Silicon (MAPS + INTT) (Veronica) Overlap treatment within Si layers (later)
- · Direct access by Eta-Phi ranges
- TPC coordinate map (Carlos)
- Silicon (Veronica)
- . Hit <> detector plane association (generic container design for TPC + silicon, Haiwang + Carlos + Veronica)
- . Alignment friendly implementation (keep in mind, hit needs to know which detector, Jin)
- Material budget per layer, active vs inactive detector components

GenFit - Key element to build trajectories (Halwano)

- . Turn Kalman Fitter into Filter for pattern recognition
- . Isolate tools to calculate Chi2 increment for a given hit and TrajectoryState updates after
- Provide easy to use getters
- · Interface to material per layer (done, Jin)

TrajectoryBuilder class - Class to pull all elements together (Christof, Haiwang)

- Track propagation
- Dynamic handling of track cloning and deletion
- Optimization of propagation strategy

- Propagate each track to the end of the detector first vs propagating all tracks one
- Hit or track multiplicity may make caching more efficient in one case vs the other
- Track scoring (Sanghoon)
- Decide if a trajectory needs to be kept or dropped based on holes in the track,

Ambiguity resolution - Necessary to keep fake rate in check and to avoid duplication

- · Check track overlaps based on shared hits
- . Book keeping of hit usage. Unique hit <>> track association vs hit sharing?
- Releasing of hits from bad tracks

Important (Needed for performance tuning of first implementation)

Definition of final Track Quality selection(Veronica + Souray)

- . Identify track quality criteria to protect against fakes while keeping the efficiency high
- · Study impact of track quality on parameter estimation

Cluster validation -> Make optimal use of the detector information to estimate hit positions and

- . Fix ITT hit position from simulation (Tony)
- · TPC clustering, drift parameterization (Carlos)
- Hit sharing + clustering (Soursy)
- Cluster position determination. Parameterizations? (Sourav)

Performance evaluation (Souray, Xiaolong)

- Efficiencies, fake rates, parameter resolutions, pull distributions, biases etc.
- · Preparation of efficiency, fake rate correct Higher level checks, J/Psi mass peaks, HF/b-jet observables
- CPU performance

Optimization of hough tracking for seeding (Sourav)

. Limiting PHG4HoughTransformTPC to the SI layers (0 - 7) works but gives shaky results

Progress

- MAPS and INTT charge sharing Tony
- Deubgging ladder INTT clustering Tony, Gaku, Chris
- Improvements on TPC simulation Carlos, Veronica
- Seeding study using Alan's Hough Christof, Sourav, Haiwang
- GenFit measurement updater Haiwang
- Working in progress module: <u>PHG4KalmanPatRec</u> Christof, Haiwang
 - Working well with low multiplicity events
 - Still needs tuning for central Hijing

Now, mid May

Single particle test 2017-05-12

Configure:

- Ladder MAPS + INTT + Cylindrical TPC (nightly build)
- single pion
- 0.5 30 GeV, -0.5 < η < 0.5

Cuts:

- 6/8 seeding (MAPS + 5 TPC)
- Search Win: 5σ
- chi2 < 20

Hijing test 2017-05-12 - 5GeV pion embedding

Configure:

- Ladder MAPS + INTT + Cylindrical TPC (nightly build)
- 100 pions embedded in central Hijing event
- pT = 5 GeV, $-0.5 < \eta < 0.5$

Cuts:

- 6/8 seeding (MAPS + 5 TPC)
- Search Win: 5σ
- chi2 < 20

Timers for Pattern Recognition

====== Timers: =======	
Seeding time:	123.907 sec
- Seeds Cleanup:	2.23723 sec
Pattern recognition time:	144.796 sec
- Track Translation time:	57.5193 sec
- Cluster searching time:	7.30252 sec
- Encoding time:	0.365767 sec
- Map iteration:	5.27908 sec
- Kalman updater time:	52.9921 sec

Next

Needed - before May. 22

- Tune the TPC cluster resolution
- Improve good seeding efficiency in Hijing
- Improve robustness more exception handling

Important but could do later

- Ambiguity resolution
- Iterative tracking
- Memory usage of the full fitting
- Electron reconstruction
- etc.